Integral Representation of Martingales in Mathematical Finance

Daniel Schwarz
University College London, London

'London-Paris Bachelier Workshop on Mathematical Finance'
Paris
September 30th 2016

Table of Contents

Problem formulation

Motivation

Result

Problem Formulation

Given is a filtered probability space $\left(\Omega, \mathbf{F},\left(\mathcal{F}_{t}\right)_{t \in[0,1]}, \mathbb{P}\right)$.
Inputs:

1. $\mathbb{Q} \sim \mathbb{P}$.
2. $S=\left(S_{t}^{i}\right)$ a \mathbb{Q}-martingale.

Goal: conditions on S such that $\forall \mathbb{Q}$-martingales M :

$$
\begin{equation*}
M_{t}=M_{0}+\int_{0}^{t} H_{u} \mathrm{~d} S_{u}, t \in[0,1] . \tag{MR}
\end{equation*}
$$

Theorem (Jacod 79)
$(M R) \Longleftrightarrow \mathbb{Q}$ is! equivalent martingale measure for S.

Table of Contents

Problem formulation

Motivation

Result

Market Completeness

In mathematical finance we typically interpret the inputs as follows:
\mathbb{Q} : arbitrage-free pricing measure,
$S_{t}=\left(S_{t}^{i}\right):$ prices of traded securities.
The martingales M correspond to replicable securities.

Theorem (Harrison \& Pliska '83)
$(M R) \Longleftrightarrow S$-market is complete.

Verification of Market Completeness

Forward Setup

Inputs: $\mathbb{Q} \sim \mathbb{P}, W=\left(W_{t}^{j}\right)$ a \mathbb{Q}-Brownian motion, $\sigma=\left(\sigma_{t}^{i j}\right)$.
S defined in terms of its predictable characteristics forward in time:

$$
S_{t}=S_{0}+\int_{0}^{t} \sigma_{u} \mathrm{~d} W_{u}
$$

Theorem (Yor '77, Karatzas \& Shreve '98)
If $\mathcal{F}_{t}=\mathcal{F}_{t}^{W}$, then $(M R)$ for $S \Longleftrightarrow \operatorname{det}\left(\sigma_{t}\right) \neq 0 \mathrm{~d} \mathbb{P} \times \mathrm{d} t$ a.s.

Verification of Market Completeness
 Backward Setup

Inputs: $\mathbb{Q} \sim \mathbb{P}, W=\left(W_{t}^{j}\right) \mathbb{Q}$-Brownian motion, $\psi=\left(\psi^{i}\right) \in \mathcal{F}_{1}$.
S defined as conditional expectation backward in time:

$$
S_{t}:=\mathbb{E}^{\mathbb{Q}}\left[\psi \mid \mathcal{F}_{t}\right]=S_{0}+\int_{0}^{t} \sigma_{u} \mathrm{~d} W_{u}
$$

where $\sigma=\left(\sigma_{t}^{i j}\right)$ from Brownian martingale representation.
Problem: conditions on ψ only for (MR) to hold.

Verification of Market Completeness
 Backward Setup

Inputs: $\mathbb{Q} \sim \mathbb{P}, W=\left(W_{t}^{j}\right) \mathbb{Q}$-Brownian motion, $\psi=\left(\psi^{i}\right) \in \mathcal{F}_{1}$.
S defined as conditional expectation backward in time:

$$
S_{t}:=\mathbb{E}^{\mathbb{Q}}\left[\psi \mid \mathcal{F}_{t}\right]=S_{0}+\int_{0}^{t} \sigma_{u} \mathrm{~d} W_{u}
$$

where $\sigma=\left(\sigma_{t}^{i j}\right)$ from Brownian martingale representation.
Problem: conditions on ψ only for (MR) to hold.
Literature: AR '08, HMT '12, RH '12, KP '12.

$$
\mathcal{F}_{t}=\mathcal{F}_{t}^{X} \text { and } \psi=g\left(X_{1}\right) \text { and } \operatorname{det} J[g](\cdot) \neq 0 \text { a.e. }
$$

+ standard assumptions $\Longrightarrow(\mathrm{MR})$ for S.

Verification of Market Completeness

Forward-Backward Setup

Inputs: $\mathbb{Q} \sim \mathbb{P}, W=\left(W_{t}^{1}, W_{t}^{2}\right) \mathbb{Q}$-B.m., $\nu=\nu(\cdot), h=h(\cdot)$.
$S=\left(S^{F}, S^{B}\right)$ represents prices of stock and option contract:

$$
\begin{aligned}
S_{t}^{F} & =S_{0}^{F}+\int_{0}^{t} \nu\left(W_{u}^{2}\right) \mathrm{d} W_{u}^{1} \\
S_{t}^{B} & :=\mathbb{E}^{\mathbb{Q}}\left[h\left(S_{1}^{F}\right) \mid \mathcal{F}_{t}\right]=S_{0}^{B}+\int_{0}^{t} Z_{u} \mathrm{~d} W_{u} .
\end{aligned}
$$

Verification of Market Completeness

Forward-Backward Setup

Inputs: $\mathbb{Q} \sim \mathbb{P}, W=\left(W_{t}^{1}, W_{t}^{2}\right) \mathbb{Q}$-B.m., $\nu=\nu(\cdot), h=h(\cdot)$.
$S=\left(S^{F}, S^{B}\right)$ represents prices of stock and option contract:

$$
\begin{aligned}
S_{t}^{F} & =S_{0}^{F}+\int_{0}^{t} \nu\left(W_{u}^{2}\right) \mathrm{d} W_{u}^{1} \\
S_{t}^{B} & :=\mathbb{E}^{\mathbb{Q}}\left[h\left(S_{1}^{F}\right) \mid \mathcal{F}_{t}\right]=S_{0}^{B}+\int_{0}^{t} Z_{u} \mathrm{~d} W_{u} .
\end{aligned}
$$

(MR) for $\left(S^{F}, S^{B}\right)$

$$
\operatorname{det} \sigma_{t}=\left|\begin{array}{cc}
\nu & 0 \\
Z^{1} & Z^{2}
\end{array}\right| \neq 0 \text { a.s. BUT } \operatorname{det} \sigma_{1}=\left|\begin{array}{cc}
\nu & 0 \\
h_{s} & 0
\end{array}\right|=0 .
$$

Literature: Romano \& Touzi '97, Davis \& Obloj '08.

Partial Radner Equilibrium

Definition

In financial economics securities are valued to lead to equilibria:

Agents: $\left(x^{m}, U^{m}\right)_{m=1}^{M}$.

Partial Radner Equilibrium: $\left(\left(S^{F}, S^{B}\right),\left(\theta^{F}, \theta^{B}\right)\right)$ such that

1. $S_{1}^{B}=\psi$,
2. given $\left(S^{F}, S^{B}\right)$
(a) $U^{m}\left(x^{m}+\int_{0}^{1} \theta^{F, m} \mathrm{~d} S^{F}+\int_{0}^{1} \theta^{B, m} \mathrm{~d} S^{B}\right) \xrightarrow[\theta^{F, m}, \theta^{B, m}]{ } \max$,
(b) $\sum_{m=1}^{M} \theta^{B, m}=0 \quad$ (clearing).

Partial Radner Equilibrium

Existence

Step 1: static problem $\rightarrow \mathbb{Q}$.
(a) $U^{m}\left(x^{m}+\int_{0}^{1} \theta^{F, m} \mathrm{~d} S^{F}+\chi^{m}\right) \xrightarrow[{\theta^{F, m}, \mathbb{E}^{\mathbb{Q}}\left[\chi^{m}\right]=} 0]{ } \max$,
(b) $\sum_{m=1}^{M} \chi^{m}=0 \quad$ (clearing).

Existence: fixed-point arguments.

$$
\frac{\mathrm{d} \mathbb{Q}}{\mathrm{~d} \mathbb{P}}=\text { const. } \times U_{c}\left(\sum_{m=1}^{M}\left(x^{m}+\int_{0}^{1} \theta^{F, m} \mathrm{~d} S^{F}\right), w\right)
$$

$U(c, w): w$-weighted sup-convolution of $U^{m}, w \in \operatorname{int} \Sigma^{M}$.
Step 2: verification of (MR) for $\left(S^{F}, S^{B}\right) \rightarrow S^{B}$.

$$
S_{t}^{B}:=\mathbb{E}^{\mathbb{Q}}\left[\psi \mid \mathcal{F}_{t}\right] .
$$

Table of Contents

Problem formulation

Motivation

Result

Setting

Inputs: $\mathbb{Q} \sim \mathbb{P}, W=\left(W_{t}^{1}, W_{t}^{2}\right) \mathbb{Q}$-B.m., state process X :

$$
X_{t}=X_{0}+\int_{0}^{t} b\left(u, X_{u}\right) \mathrm{d} u+\int_{0}^{t} \eta\left(u, X_{u}\right) \mathrm{d} W_{u}
$$

The prices of stock $\left(S^{F}\right)$ and option contract $\left(S^{B}\right)$ are given by

$$
S_{t}^{F}=f\left(t, X_{t}\right)
$$

and

$$
S_{t}^{B}:=\mathbb{E}^{\mathbb{Q}}\left[h\left(X_{1}\right) \mid \mathcal{F}_{t}\right] .
$$

Problem: conditions on b, η, f and h such that (MR) holds for $S=\left(S^{F}, S^{B}\right)$.

Conditions

$$
\mathcal{B}_{K}(h, \varphi, t):=\int_{K} \frac{1}{2} A^{j k} \frac{\partial h}{\partial x^{j}} \frac{\partial \varphi}{\partial x^{k}}-\left(B^{j}-\frac{1}{2} \frac{\partial A^{j k}}{\partial x^{k}}\right) \frac{\partial h}{\partial x^{j}} \varphi \mathrm{~d} x
$$

Structural:
(A1) $\forall K \subset \subset \mathbb{R}^{2}, \exists \varphi \in W_{p, 0}^{1}$ s.t. $\mathcal{B}_{K}[h, \varphi, 1] \neq 0$.
Regularity:
(A2) $t \mapsto b(t, \cdot), \eta(t, \cdot), f(t, \cdot)$ are
(a) analytic of $(0,1)$ to C,
(b) continuous of $[0,1]$ to C^{2}.

Conditions

$$
\mathcal{B}_{K}(h, \varphi, t):=\int_{K} \frac{1}{2} A^{j k} \frac{\partial h}{\partial x^{j}} \frac{\partial \varphi}{\partial x^{k}}-\left(B^{j}-\frac{1}{2} \frac{\partial A^{j k}}{\partial x^{k}}\right) \frac{\partial h}{\partial x^{j}} \varphi \mathrm{~d} x
$$

Structural:
(A1) $\forall K \subset \subset \mathbb{R}^{2}, \exists \varphi \in W_{p, 0}^{1}$ s.t. $\mathcal{B}_{K}[h, \varphi, 1] \neq 0$.
Regularity:
(A2) $t \mapsto b(t, \cdot), \eta(t, \cdot), f(t, \cdot)$ are
(a) analytic of $(0,1)$ to C,
(b) continuous of $[0,1]$ to C^{2}.

Example
Stochastic volatility model completed with a call option, then (A1) becomes:

$$
\partial_{x} \nu(x) \neq 0 \text { a.e. on } \mathbb{R} .
$$

Main Result

Theorem (S. '16)
If $\mathcal{F}_{t}=\mathcal{F}_{t}^{X}$ and (A1) and (A2) + standard assumptions hold $\Longrightarrow(M R)$ for $S=\left(S^{F}, S^{B}\right)$.

Elements of Proof

A PDE for the option price:

$$
S_{t}^{B}=\mathbb{E}^{\mathbb{Q}}\left[h\left(X_{1}\right) \mid \mathcal{F}_{t}\right]=v\left(t, X_{t}\right)
$$

where

$$
v_{t}+\mathcal{L}^{X}(t) v=0, \quad v(1, \cdot)=h(\cdot)
$$

Evolution of security prices $S=\left(S^{F}, S^{B}\right)$:

$$
\mathrm{d} S_{t}=(J[f, v] \eta)\left(t, X_{t}\right) \mathrm{d} W_{t}
$$

Need to show:

$$
J[f, v](t, x)
$$

is nonsingular $\mathrm{d} t \times \mathrm{d} x$ a.e.

Elements of Proof

$w(t, x):=\operatorname{det} J[f, v](t, x)$, then

$$
w_{t}+\mathcal{L}^{X}(t) w=-\mathcal{P}(t) v
$$

Evolution equations: $t \mapsto w(t, \cdot)$ is
(a) analytic on $(0,1)$,
(b) continuous on $[0,1]$.

Suppose for a contradiction $w=0$ on open $E \subset(0,1) \times \mathbb{R}^{2}$.
Analyticity: $\mathcal{P}(t) v=0$ on $(0,1)$.
Weak-formulation: $\mathcal{B}_{K}(v, \varphi, t)=0$ on $(0,1) \forall \varphi$.
Continuity: $\mathcal{B}_{K}(h, \varphi, 1)=0 \forall \varphi$.

Merci Beaucoup!
Questions?

