Integral Representation of Martingales in Mathematical Finance

Daniel Schwarz

University College London, London

'London-Paris Bachelier Workshop on Mathematical Finance' Paris September 30th 2016 Problem formulation

Motivation

Result

Table of Contents

Problem formulation

Motivation

Result

(4日) (個) (目) (目) (目) (の)

Problem Formulation

Given is a filtered probability space $(\Omega, \mathbf{F}, (\mathcal{F}_t)_{t \in [0,1]}, \mathbb{P})$.

Inputs:

1. $\mathbb{Q} \sim \mathbb{P}$. 2. $S = (S_t^i)$ a \mathbb{Q} -martingale.

Goal: conditions on S such that $\forall \mathbb{Q}$ -martingales M:

$$M_t = M_0 + \int_0^t H_u \, \mathrm{d}S_u, \, t \in [0, 1].$$
 (MR)

Theorem (Jacod 79) (MR) $\iff \mathbb{Q}$ is ! equivalent martingale measure for S. Problem formulation

Motivation

Result

Table of Contents

Problem formulation

Motivation

Result

▲□▶ ▲□▶ ▲国▶ ▲国▶ 三国 - のへで

Market Completeness

In mathematical finance we typically interpret the inputs as follows:

- \mathbb{Q} : arbitrage-free pricing measure,
- $S_t = (S_t^i)$: prices of traded securities.

The martingales M correspond to replicable securities.

Theorem (Harrison & Pliska '83) (MR) \iff S-market is complete.

Verification of Market Completeness Forward Setup

Inputs: $\mathbb{Q} \sim \mathbb{P}$, $W = (W_t^j)$ a \mathbb{Q} -Brownian motion, $\sigma = (\sigma_t^{ij})$.

S defined in terms of its predictable characteristics forward in time:

$$S_t = S_0 + \int_0^t \sigma_u \, \mathrm{d} W_u.$$

Theorem (Yor '77, Karatzas & Shreve '98) If $\mathcal{F}_t = \mathcal{F}_t^W$, then (MR) for $S \iff \det(\sigma_t) \neq 0 \, \mathrm{d}\mathbb{P} \times \mathrm{d}t$ a.s.

Verification of Market Completeness Backward Setup

Inputs: $\mathbb{Q} \sim \mathbb{P}$, $W = (W_t^j)$ \mathbb{Q} -Brownian motion, $\psi = (\psi^i) \in \mathcal{F}_1$.

S defined as conditional expectation backward in time:

$$S_t := \mathbb{E}^{\mathbb{Q}}[\psi|\mathcal{F}_t] = S_0 + \int_0^t \sigma_u \, \mathrm{d}W_u,$$

where $\sigma = (\sigma_t^{ij})$ from Brownian martingale representation. Problem: conditions on ψ only for (MR) to hold.

Verification of Market Completeness Backward Setup

Inputs: $\mathbb{Q} \sim \mathbb{P}$, $W = (W_t^j)$ \mathbb{Q} -Brownian motion, $\psi = (\psi^i) \in \mathcal{F}_1$.

S defined as conditional expectation backward in time:

$$S_t := \mathbb{E}^{\mathbb{Q}}[\psi|\mathcal{F}_t] = S_0 + \int_0^t \sigma_u \, \mathrm{d}W_u,$$

where $\sigma = (\sigma_t^{ij})$ from Brownian martingale representation. Problem: conditions on ψ only for (MR) to hold.

Literature: AR '08, HMT '12, RH '12, KP '12.

 $\mathcal{F}_t = \mathcal{F}_t^X$ and $\psi = g(X_1)$ and det $J[g](\cdot) \neq 0$ a.e.

+ standard assumptions \implies (MR) for S.

Verification of Market Completeness Forward-Backward Setup

Inputs: $\mathbb{Q} \sim \mathbb{P}$, $W = (W_t^1, W_t^2) \mathbb{Q}$ -B.m., $\nu = \nu(\cdot)$, $h = h(\cdot)$.

 $S = (S^F, S^B)$ represents prices of stock and option contract:

$$S_t^F = S_0^F + \int_0^t \nu(W_u^2) \, \mathrm{d}W_u^1$$

$$S_t^B := \mathbb{E}^{\mathbb{Q}}[h(S_1^F)|\mathcal{F}_t] = S_0^B + \int_0^t Z_u \, \mathrm{d}W_u.$$

Verification of Market Completeness Forward-Backward Setup

Inputs: $\mathbb{Q} \sim \mathbb{P}$, $W = (W_t^1, W_t^2) \mathbb{Q}$ -B.m., $\nu = \nu(\cdot)$, $h = h(\cdot)$.

 $S = (S^F, S^B)$ represents prices of stock and option contract:

 $S_t^F = S_0^F + \int_0^t \nu(W_u^2) \, \mathrm{d} W_u^1$ $S_t^B := \mathbb{E}^{\mathbb{Q}}[h(S_1^F)|\mathcal{F}_t] = S_0^B + \int_0^t Z_u \, \mathrm{d}W_u.$ (MR) for (S^F, S^B) det $\sigma_t = \begin{vmatrix} \nu & 0 \\ Z^1 & Z^2 \end{vmatrix} \neq 0$ a.s. BUT det $\sigma_1 = \begin{vmatrix} \nu & 0 \\ h_c & 0 \end{vmatrix} = 0$.

Literature: Romano & Touzi '97, Davis & Obloj '08.

Partial Radner Equilibrium

In financial economics securities are valued to lead to equilibria:

Agents: $(x^m, U^m)_{m=1}^M$.

Partial Radner Equilibrium: $((S^F, S^B), (\theta^F, \theta^B))$ such that

1.
$$S_1^B = \psi$$
,
2. given (S^F, S^B)
(a) $U^m(x^m + \int_0^1 \theta^{F,m} dS^F + \int_0^1 \theta^{B,m} dS^B) \xrightarrow[\theta^{F,m}, \theta^{B,m}]{} max$,
(b) $\sum_{m=1}^M \theta^{B,m} = 0$ (clearing).

Partial Radner Equilibrium

Step 1: static problem $\rightarrow \mathbb{Q}$. (a) $U^m(x^m + \int_0^1 \theta^{F,m} dS^F + \chi^m) \xrightarrow[\theta^{F,m}, \mathbb{E}^{\mathbb{Q}}[\chi^m]=0]{} \max$, (b) $\sum_{m=1}^M \chi^m = 0$ (clearing).

Existence: fixed-point arguments.

$$\frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\mathbb{P}} = \mathrm{const.} \times U_c(\sum_{m=1}^{M} (x^m + \int_0^1 \theta^{F,m} \mathrm{d}S^F), w),$$

U(c, w): w-weighted sup-convolution of U^m , $w \in \text{int } \Sigma^M$.

Step 2: verification of (MR) for $(S^F, S^B) \rightarrow S^B$.

$$S_t^B := \mathbb{E}^{\mathbb{Q}}[\psi|\mathcal{F}_t].$$

Problem formulation

Motivation

Result

Table of Contents

Problem formulation

Motivation

Result

Setting

Inputs: $\mathbb{Q} \sim \mathbb{P}$, $W = (W_t^1, W_t^2) \mathbb{Q}$ -B.m., state process X:

$$X_t = X_0 + \int_0^t b(u, X_u) \, \mathrm{d}u + \int_0^t \eta(u, X_u) \, \mathrm{d}W_u.$$

The prices of stock (S^F) and option contract (S^B) are given by

$$S_t^F = f(t, X_t),$$

and

$$S_t^B := \mathbb{E}^{\mathbb{Q}}[h(X_1)|\mathcal{F}_t].$$

Problem: conditions on *b*, η , *f* and *h* such that (MR) holds for $S = (S^F, S^B)$.

くしゃ (中)・(中)・(中)・(日)

Conditions

$$\mathcal{B}_{\mathcal{K}}(h,\varphi,t) := \int_{\mathcal{K}} \frac{1}{2} \mathcal{A}^{jk} \frac{\partial h}{\partial x^{j}} \frac{\partial \varphi}{\partial x^{k}} - (\mathcal{B}^{j} - \frac{1}{2} \frac{\partial \mathcal{A}^{jk}}{\partial x^{k}}) \frac{\partial h}{\partial x^{j}} \varphi \, \mathrm{d}x$$

Structural:

(A1) $\forall \mathcal{K} \subset \subset \mathbb{R}^2$, $\exists \varphi \in W^1_{p,0}$ s.t. $\mathcal{B}_{\mathcal{K}}[h,\varphi,1] \neq 0$.

Regularity: (A2) $t \mapsto b(t, \cdot), \eta(t, \cdot), f(t, \cdot)$ are (a) analytic of (0, 1) to C, (b) continuous of [0, 1] to C^2 .

Conditions

$$\mathcal{B}_{K}(h,\varphi,t) := \int_{K} \frac{1}{2} \mathcal{A}^{jk} \frac{\partial h}{\partial x^{j}} \frac{\partial \varphi}{\partial x^{k}} - (\mathcal{B}^{j} - \frac{1}{2} \frac{\partial \mathcal{A}^{jk}}{\partial x^{k}}) \frac{\partial h}{\partial x^{j}} \varphi \, \mathrm{d}x$$

Structural:

(A1) $\forall \mathcal{K} \subset \subset \mathbb{R}^2, \ \exists \varphi \in W^1_{p,0} \text{ s.t. } \mathcal{B}_{\mathcal{K}}[h,\varphi,1] \neq 0.$

Regularity: (A2) $t \mapsto b(t, \cdot), \eta(t, \cdot), f(t, \cdot)$ are (a) analytic of (0, 1) to C, (b) continuous of [0, 1] to C^2 .

Example

Stochastic volatility model completed with a call option, then (A1) becomes:

$$\partial_x \nu(x) \neq 0$$
 a.e. on \mathbb{R} .

Result

Main Result

Theorem (S. '16)
If
$$\mathcal{F}_t = \mathcal{F}_t^X$$
 and (A1) and (A2) + standard assumptions hold
 \implies (MR) for $S = (S^F, S^B)$.

Elements of Proof

A PDE for the option price:

$$S_t^B = \mathbb{E}^{\mathbb{Q}}[h(X_1)|\mathcal{F}_t] = v(t, X_t),$$

where

$$v_t + \mathcal{L}^X(t)v = 0, \quad v(1, \cdot) = h(\cdot).$$

Evolution of security prices $S = (S^F, S^B)$:

$$\mathrm{d}S_t = (J[f,v]\eta)(t,X_t) \mathrm{d}W_t$$

Need to show:

is nonsingular $dt \times dx$ a.e.

Result

Elements of Proof

$$w(t,x) := \det J[f,v](t,x)$$
, then

$$w_t + \mathcal{L}^X(t)w = -\mathcal{P}(t)v.$$

Evolution equations: $t\mapsto w(t,\cdot)$ is

- (a) analytic on (0, 1),
- (b) continuous on [0, 1].

Suppose for a contradiction w = 0 on open $E \subset (0,1) \times \mathbb{R}^2$. Analyticity: $\mathcal{P}(t)v = 0$ on (0,1). Weak-formulation: $\mathcal{B}_K(v, \varphi, t) = 0$ on $(0,1) \forall \varphi$. Continuity: $\mathcal{B}_K(h, \varphi, 1) = 0 \forall \varphi$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Merci Beaucoup! Questions?